Mediator Pattern

Motivation

In order to have a good object oriented design we have to create lots of classes interacting one with each other. If certain principles are not applied the final framework will end in a total mess where each object relies on many other objects in order to run. In order to avoid tight coupled frameworks, we need a mechanism to facilitate the interaction between objects in a manner in that objects are not aware of the existence of other objects.

Let's take the example of a screen. When we create it we add all sort of controls to the screen. This control need to interact with all the other control. For example when a button is pressed it must know if the data is valid in other controls. As you have seen if you created different applications using forms you don't have to modify each control class each time you add a new control to the form. All the operations between controls are managed by the form class itself. This class is called mediator.

Intent

Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling by keeping objects from referring to each other explicitly, and it lets you vary their interaction independently.

 

Implementation


Participants

The participants classes in this pattern are:


Applicability

According to Gamma et al, the Mediator pattern should be used when:

Examples

Example 1 - GUI Libraries

The mediator example is one pattern that is already used in many applications. One of the examples is represented by the Dialog classes in GUI applications frameworks. A Dialog window is a collection of graphic and non-graphic controls. The Dialog class provides the mechanism to facilitate the interaction between controls. For example, when a new value is selected from a ComboBox object a Label has to display a new value. Both the ComboBox and the Label are not aware of each other structure and all the interaction is managed by the Dialog object. Each control is not aware of the existence of other controls.

Example 2 - Chat application

The chat application is another example of the mediator pattern. In a chat application we can have several participants. It's not a good idea to connect each participant to all the others because the number of connections would be really high, there would be technical problems due to proxies and firewalls, etc... . The most appropriate solution is to have a hub where all participants will connect; this hub is just the mediator class.

Participants:

Specific problems and implementation

Abstract Mediators

There is no need to create an Abstract Mediator class or an interface as long as the colleagues are going to use only one mediator. The definition of an abstract Mediator is required only if the colleagues needs to work with different mediators.

Communication between mediators and colleagues

Complexity of Mediator object

The mediator object handles all the interaction between the participants objects. One potential problem is complexity of the mediator when the number of participants is a high and the different participant classes is high. If you created custom dialogs for GUI applications you remember that after some time the dialogs classes become really complex because they had to manage a lot of operations.


Consequences

As with most design patterns, there are both advantages and disadvantages of using the Mediator Patern. The following section will briefly outline a few of these issues.

Advantages

Disadvantages


Related Patterns

There are a few design patterns that are closely related to the Mediator pattern and are often used in conjunction with it.

Known Uses

In the following section, we'll discuss some real-world uses of the Mediator pattern. You'll find the Mediator in many situations where there are many components that must interact with one another in complex ways. User Interfaces

Maybe the mediator pattern is mostly used in the user interfaces. Almost any GUI framework is build around it. Like discussed before, the classes representing forms (Dialog, Form,... ) represents the the mediator while each control represents a colleague. The form class provides the mechanism to facilitate the interaction between controls; an inherited class is created each time a new screen is created and the specific code is written in this class. This way, the controls communication is mediated by this form class. Java Message Service

The Java Message Service (JMS) API is a Java Message Oriented Middleware (MOM) API for sending messages between two or more clients. The JMS API supports 2 models. One of them is the publish-subscribe model. It is an implementation of the mediator pattern. The messages can be publisehd based on a particular topic. The publisher has to create a subscription to which different subscribers may subscribe. Zero or more subscribers may subscribe to receive messages on a particular message topic. The publisher and the subscriber doesn't know one about eachother, the subscriber can be even inactive. In this case the subscriber receives the messages when it will become active.


Conclusion

The mediator pattern is used to takes the role of a hub or router and facilitates the communication between many classes. A similarity can be made with the database systems. The mediator transform a hard to implement relation of many to many, where each calls has to communicate with each other class, in 2 relations, easy to implement, of many to one and one to many, where the communication is handled by the mediator class.